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Most natural and social systems evolve according
to multistep processes. We refer to this kind of dy-
namics as punctuated evolution, because it describes
the behavior of nonequilibrium systems that evolve
in time, not according to a smooth or gradual fash-
ion, but by going through periods of stagnation in-
terrupted by fast changes. These include the growth
of urban population, the increase of life complexity
and the development of technology of human civi-
lizations, and, more prosaically, the natural growth
of human bodies.

According to the theory of punctuated equilib-
rium, the evolution of the majority of sexually
reproducing biological species on Earth also goes
through a series of sequential growth-stagnation
stages. The resulting punctuated-equilibrium con-
cept of the evolution of biological species is well doc-
umented from paleontological fossil records.

The development of human societies provides
many other examples of punctuated evolution. For
instance, governmental policies, as a result of
bounded rationality of decision makers, evolve in-
crementally. The growth of organizations, of firms,
and of scientific fields also demonstrates nonuni-
form developments, in which relatively long periods
of stasis are followed by intense periods of radical
changes. During the training life of an athlete, sport
achievements rise also in a stepwise fashion. There
are many other examples.

Despite these ubiquitous empirical examples of
punctuated evolution occurring in the development
of many evolving systems, to our knowledge, there
exists no mathematical model describing this kind
of evolution.

A new delay equation is introduced to describe
the punctuated evolution of complex nonlinear sys-
tems. It is surprisingly rich in the variety of regimes
that it describes, depending on the system param-
eters. In addition to the process of punctuated
increase, it demonstrates punctuated decay, punc-
tuated up-down motion, effects of mass extinction,
and finite-time catastrophes.

Detailed analytical and numerical investigations
provide the classification of all possible types of so-
lutions for the dynamics of a population in the four
main regimes dominated respectively by: (i) gain
and competition, (ii) gain and cooperation, (iii) loss
and competition, and (iv) loss and cooperation. Our

delay equation may exhibit bistability in some pa-
rameter range, as well as a rich set of regimes, in-
cluding monotonic decay to zero, smooth exponen-
tial growth, punctuated unlimited growth, punctu-
ated growth or alternation to a stationary level, os-
cillatory approach to a stationary level, sustainable
oscillations, finite-time singularities as well as finite-
time death.

General model

Consider the delay evolution equation for a nor-
malized measure characterizing the population de-
velopment

dx

dt
= σ1x − σ2

x2

y
, (1)

where y = y(t) = a + bx(t − τ) is a dimensionless
carrying capacity, and time lag τ ≥ 0.

This equation is complemented by an initial his-
tory condition

x(t) = x0 (t ≤ 0) , (2)

according to which y(t) = y0 = a + bx0 for t ≤ 0.

• The coefficient a, characterizing the initial re-
sources provided by Nature, is non-negative.

• The coefficient b, controlling the impact of past
population on the present carrying capacity,
can be either positive or negative, depending on
whether production or destruction dominates.
A known example for b < 0 is the destruc-
tion of habitat by humans, associated with de-
forestation, reduction of biodiversity, and cli-
mate changes. The destruction of the global
Earth ecosystem is caused by the rapid growth
of the human population, which is sometimes
compared with a pathological cancer process
that could result in the eventual extinction
of the human population. Another example
of destructive activity is firm mismanagement,
and operational risks, which can result in firm
bankruptcy and even in a global economic cri-
sis, when many economic and financial institu-
tions are mismanaged. One more illustration
is the destruction of the economy of a country
by a corrupted government. In contrast, a pos-
itive b corresponds to improved exploitation of
resources and increased productivity.
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• The initial value x0 of the dimensionless popu-
lation is positive.

• The initial value y0 of the carrying capacity can
be either positive or negative. The standard
case is, of course, y0 > 0. A negative value y0

of the effective carrying capacity at t = 0 can
be interpreted as describing a strongly destruc-
tive action of the agents that occurred in the
preceding time interval [−τ, 0].

The above statements translate into

a ≥ 0 , −∞ < b < ∞ ,

x0 > 0 , −∞ < y0 < ∞ .

We restrict our investigation to non-negative dimen-
sionless population size x(t) ≥ 0.

There are thus four possible types of societies,
depending on the signs of σ1 and σ2:

σ1 > 0 & σ2 > 0 (gain + competition),
σ1 > 0 & σ2 < 0 (gain + cooperation),
σ1 < 0 & σ2 > 0 (loss + competition),
σ1 < 0 & σ2 < 0 (loss + cooperation). (3)

Here we present the summary of the case of pre-
vailing gain, when σ1 > 0, and competition, when
σ2 > 0. Detail description of this and other variants
described by conditions (3) can be found in Ref. [1].

When gain (birth) prevails over loss (death) and
competition prevails over cooperation, this corre-
sponds to the first line in the classification (3). Then
Eq. (1) translates into

dx(t)
dt

= x(t) − x2(t)
a + bx(t − τ)

. (4)

In the general case, there are two stationary so-
lutions

x∗
1 = 0 , x∗

2 =
a

1 − b
. (5)

The first fixed point, x∗
1, is unstable for any a > 0

and any b, and all τ > 0. The second fixed point x∗
2

is stable in one of the regions, when either

a > 0 , −1 < b < 1 , τ ≥ 0 ,

or
a = 0 , 0 < b < 1 , τ ≥ 0 ,

or
a > 0 , b < −1 , τ < τ0 ,

where

τ0 ≡ 1√
b2 − 1

arccos
(

1
b

)
.

The point x∗
2 becomes a stable center (associated

with a vanishing Lyapunov exponent λ2) for a > 0,

b < −1, τ = τ0. The value τ0 diverges, if b ↗ −1,
as

τ0 � π√
2(|b| − 1)

(b ↗ −1) .

Varying the system parameters yields the different
solutions, which we analyze successively.

Punctuated unlimited growth

When the carrying capacity increases, due to the
intensive creative activity of the agents forming the
system, which corresponds to the parameters

a ≥ 0 , b ≥ 1 , τ ≥ 0 ,

then x0 < y0 and the fixed point x∗
2 does not exist.

The function x(t) grows by steps of duration � τ ,
tending to infinity as time increases to infinity.

Punctuated growth to a stationary
level

For a lower creative activity (quantified by b) of
the population affecting the effective carrying ca-
pacity, i.e., for

a > (1 − b)x0 , 0 ≤ b < 1 , τ ≥ 0 ,

which implies that x0 < y0 < x∗
2. the value of

x(t) monotonically grows by steps to the stationary
solution x∗

2

Punctuated decay to a stationary
level

When the pre-existing carrying capacity a is
smaller than in the previous cases and the creation
coefficient b is not too high, so that

0 ≤ a < (1 − b)x0 , 0 ≤ b < 1 , τ ≥ 0 ,

which means that x0 > x∗
2 > y0 > 0, then x(t)

monotonically decays by steps to the stationary so-
lution x∗

2.

Punctuated alternation to a
stationary level

When the initial capacity a is large, but the agent
activity is destructive, with the parameters

a > |b|x0 , −1 ≤ b < 0 , τ ≥ 0 ,

there are two subcases. If a > (1 + |b|)x0, so that
x0 < x∗

2 < y0, then x(t) grows initially. And if
|b|x0 < a < (1 + |b|)x0, so that x0 > x∗

2 > y0 > 0,
then x(t) decreases initially. However, the follow-
ing behavior in both these subcases is similar: x(t)
tends to the stationary solution x∗

2 through a se-
quence of up and down alternations.
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Oscillatory approach to a stationary
level

If the capacity is large and the destructive activity
is rather strong, such that

a > |b|x0 , b < −1 , τ < τ0 ,

there are again two subcases, when x(t) either in-
creases or decays initially. But the following behav-
ior for both these subcases is again similar: x(t)
tends toward the focus x∗

2 by oscillating around it.
Contrary to the previous case, here the stagnation
stages are practically absent, so that the overall evo-
lution is purely oscillatory, with a decaying ampli-
tude of oscillations.

Everlasting nondecaying oscillations

With the parameters a and b as in the previous
case, but with the time lag being exactly equal to
τ0, when

a > |b|x0 , b < −1 , τ = τ0 ,

then x(t) oscillates around the center x∗
2 without

decaying. At the initial time, x can either increase
or decrease, as in the previous cases. But, it will
rapidly set into a stationary oscillatory behavior
without attenuation.

Punctuated alternation to finite-time
death

The fact that the behavior of the system depends
sensitively on the time lag τ is well exemplified by
the regime in which the values of a and b are the
same as in regime for everlasting nondecaying oscil-
lations, but the lag becomes longer, so that

a > |b|x0 , b < −1 , τ > τ0 .

In this regime, x(t) alternates between upward and
downward jumps, with increasing amplitude, until
it hits the zero level at a finite death time td de-
fined by the equation a + bx(td − τ) = 0, at which
time the rate of decay becomes minus infinity. As in
the previous cases, depending on whether x0 < y0

or x0 > y0, the initial motion can be either up or
down, respectively. But the following behavior fol-
lows a similar path, with x(t) always going to zero
in finite time. The abrupt fall of the population x(t)
to zero can be interpreted as a mass extinction, as
has occurred several times for species on the Earth.
The effect of mass extinction in the present exam-
ple is caused by the intensive destructive activity
(b < −1) of the agents composing the system. This
is an example of total collapse caused by the de-
struction of habitat.

Growth to a fixed finite-time
singularity

Another example of catastrophic behavior hap-
pens when the initial carrying capacity is negative
(y0 < 0). This occurs when the habitat has been
destroyed in the preceding time interval [−τ, 0] and
the destruction goes on for t > 0. For the set of
parameters

a < |b|x0 , b < 0 , τ ≥ tc ,

with a sufficiently long time lag τ , the function x(t)
diverges at the singularity time tc, given by the ex-
pression tc = ln(1−y0/x0). The divergence is hyper-
bolic, i.e., in the vicinity of tc, x(t) � y0/(tc − t) for
t → tc − 0. For the considered parameters a, b, the
singularity always occurs at the critical time tc de-
termined by the values of x0 and y0, independently
on the delay time τ as long as τ is larger than tc.

Growth to a moving finite-time
singularity

When the delay time τ is smaller than the singu-
larity time tc = ln(1 − y0/x0), and

a < |b|x0 , b < 0 , τc < τ ≤ tc ,

the critical lag τc can only be determined numeri-
cally. In this regime, x(t) grows without bound and
reaches infinity in a finite time at a moving singu-
larity time t∗c ≥ tc which is a function of τ . We find
that t∗c goes to infinity as τ decreases to τc.

The catastrophic divergence of x(t) can be in-
terpreted as a diagnostic of a transition to another
state or to a different regime in which other mech-
anisms become dominant. It is natural to interpret
the critical points as periods of transitions to new
regimes.

Exponential growth to infinity

As the delay time τ becomes smaller than the
threshold value τc, defined in the previous section,
i.e., for the following parameters

a < |b|x0 , b < 0 , 0 < τ ≤ τc ,

the finite-time singularity does not exist anymore.
The function x(t) exhibits a simple unbounded ex-
ponential growth to infinity, as time tends to infin-
ity.

The exact limit of a zero time delay τ = 0 is not
included in this regime. When τ is exactly zero, the
exponential growth regime is replaced abruptly into
the regime with a fixed-time singularity.
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Figure 1: Scheme of the variety of qualitatively different solution types for the most complicated and the most
realistic regime, when gain (birth) prevails over loss (death) and competition is stronger than cooperation.

Conclusion

We have carefully investigated all the possible
emergent regimes, using both analytical and numer-
ical methods. This has led to a complete classifica-
tion of the possible types of different solutions. It
turns out that there exists a large variety of solu-
tion types. In particular, we find a rich and rather
sensitive dependence of the structural properties of
the solutions on the value of the delay time τ . For
instance, in the regime where loss and competition
are dominant, depending on the value of the ini-
tial carrying capacity and of τ , we find monotonic
decay to zero, oscillatory approach to a station-
ary level, sustainable oscillations and moving finite-
time singularities. This should not be of too much
surprise, since delay equations are known to en-
joy much richer properties than ordinary differential
equations. In this spirit, Kolmanovskii and Myshkis
[2] provide an example of a delay-differential equa-
tion, whose properties are as rich as those of a sys-

tem of ten coupled ordinary differential equations.
We have illustrated in different figures the main
qualitative properties of the different solutions, not
repeating the presentations of solutions with similar
behavior.

Figure 1 presents the scheme of the variety
of qualitatively different solution types described
above for the most complicated and the most re-
alistic regime, when gain (birth) prevails over loss
(death), σ1 > 0, and competition is stronger than
cooperation, σ2 > 0. Detailed description and in-
vestigation of all possible regimes enumerated in (3)
can be found in Ref. [1].
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